An Efficient Tracking Algorithm Based on Spatial Kernel and FCM Classifier
نویسندگان
چکیده
A modified movable object tracking algorithm which uses the flexible Metric Distance Transform kernel and FCM Classifier is proposed and tested. The target shape which defines the dn Distance Transform is found based on conventional statistical parameters as feature vector extraction and Fuzzy C-Mean (FCM) classifier to differentiate tracked target from background. This replaces the more usual Epanechnikov kernel (E-kernel), improving target representation and localization without increasing the processing time, minimizing the similarity measure using the Bhattacharya coefficient. The algorithm is tested on several image sequences and shown to achieve robust and reliable framerate tracking.
منابع مشابه
SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملRobust Segmentation Using Kernel and Spatial Based Fuzzy C-means Methods on Breast X-ray Images
Robust methods for precise segmentation of breast region or volume from breast X-ray images, including mammogram and tomosynthetic image, is crucial for applications of these medical images. However, this task is challenging because the acquired images not only are inherent noisy and inhomogeneous, but there are also connected or overlapped artifacts, or noises on the images as well, due to loc...
متن کاملA Novel Kernel Based Fuzzy C Means Clustering With Cluster Validity Measures
-Clustering algorithms are an integral part of both computational intelligence and pattern recognition. It is unsupervised methods for classifying data into subgroups with similarity based inter cluster and intra cluster. In fuzzy clustering algorithms, mainly used algorithm is Fuzzy c-means (FCM) algorithm. This FCM algorithm is efficient only for spherical data when the input of the data stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011